

Generating high-quality libraries for DIA datasets

Ralf Gabriels

GENT

UNIVERSITEIT

16/11/2022

EMBO Course Targeted Proteomics

Overview

Why use predicted libraries for DIA Practical considerations Benchmarking results Future development Take home messages

Overview

Why use predicted libraries for DIA Practical considerations Benchmarking results Future development Take home messages

Mass spectrometry data usually contains three dimensions: RT, m/z and intensity

Figure adapted from Pavel Sinitcyn et al. Annu. Rev. Biomed. Data Sci. (2018)

DDA proteomics data is traditionally identified using only the m/z dimension

While DIA removes the stochasticity of DDA, the resulting spectra are much more complex to identify

+ Easy to identify - Not all precursors fragmented - Hard to identify + All precursors fragmented

Figure adapted from R Peckner et al., Nat. Methods 2018, doi:10.1038/nmeth.4643

To cope with the increase in identification ambiguity, the additional RT and intensity dimensions are usually sourced from spectral libraries

Unfortunately, library-based DIA carries over DDA's drawback of stochasticity: Only the most intense precursors are acquired

In silico predicted libraries can combine the best of both worlds

The smaller search space is a major, but often overlooked advantage of spectral libraries

DDA Pan-Human library

211 000 precursors

* to scale

Full proteome digest3 000 000 precursors

2+ / 3+ cmm@C, ox@M 2 missed cleavages minimum 7 amino acids maximum 5000 Da m/z 400 – 1000 Da

Brian C Searle et al. Nat. Commun. (2018). doi:10.1038/s41467-018-07454-w

Overview

Why use predicted libraries for DIA **Practical considerations** Benchmarking results Future development Take home messages

Fragment intensities are the most helpful, but arguably most complex, dimension to predict

Fragment intensities are the most helpful, but arguably most complex, dimension to predict

Many predictors have been published in the last decade, each with their own specific advantages and disadvantages

Robbin Bouwmeester & Ralf Gabriels et al. Proteomics (2020) doi:10.1002/pmic.201900351; Bo Wen et al. Proteomics (2020) doi:10.1002/pmic.201900335

Ralf Gabriels et al. Nucleic Acids Research. (2019) doi:10.1093/nar/gkz299

Ralf Gabriels et al. Nucleic Acids Research. (2019) doi:10.1093/nar/gkz299

Ralf Gabriels et al. Nucleic Acids Research. (2019) doi:10.1093/nar/gkz299

Prediction HCD model

Prediction TMT model

The scoring function should fit the intensities that are predicted

The scoring function should fit the intensities that are predicted

Figure adapted from Kaiyuan Liu et al. Analytical Chemistry. (2020) doi:10.1021/acs.analchem.9b04867

Retention time is straightforward to predict, but must be calibrated to each LC setup

Calibration of different datasets

DeepLC prediction + calibration

Ion mobility is the new kid on the block, but might not bring a lot of value to the identification step itself

Predicted libraries allow for customizability of the search space with plenty of parameters

- Protein database
- Digestion rules
- Missed cleavages
- Charge states
- Modifications
- Length
- Peptide mass
- Precursor m/z

Full proteome digest 3 000 000 precursors

2+ / 3+ cmm@C, ox@M 2 missed cleavages minimum 7 amino acids maximum 5000 Da m/z 400 – 1000 Da

Many spectral library formats exist, unfortunately without much consensus

Name: Vecuronium cation

Comment: NIST Mass Spectrometry Data Center

Num peaks: 22

81.0699 9.29 "C6H9=p-C28H48N2O4/0.2ppm;C12H18^2=p-C22H40N2O4^2/-3.1ppm 14/14"

86.0962 56.04 "C5H12N=p-C29H45NO4/-2.6ppm;C10H24N2^2=p-C24H34(

98.0964 3.20 "C6H12N=p-C28H45NO4/-0.2ppm;C12H24N2^2=p-C22H34O4

99.1042 2.10 "C6H13N=p-C28H44NO4/-0.5ppm;C12H26N2^2=p-C22H32O4

HUPO-PSI/ mzSpecLib

NIST MSP SpectraST sptxt BiblioSpec MS2/SSL EncyclopeDIA DLib Spectronaut CSV

mzSpecLib: A standard format to exchange/distribute spectral libraries

AX 10	⊙ 6	५ २) 1	tif 14	¥ 12	
Contributors	Issues	Discussion	Stars	Forks	

•••

Overview

Why use predicted libraries for DIA Practical considerations Benchmarking results Future development Take home messages

Predicted libraries in combination with an intermediate pooled GPF DIA library outperforms other methods

Similar results were obtained simultaneously by another group

Brian C. Searle et al. Nat. Communications (2020) doi:10.1038/s41467-020-15346-1

A recent large-scale methodological comparison shows that the combination of library type and software greatly influences the results

software

An Staes et al. (manuscript in preparation)

Overview

Why use predicted libraries for DIA Practical considerations Benchmarking results Future development Take home messages

More aspects of LC-IM-MS/MS can be (and will be) predicted

Left: Unpublished work; Right: ProteomicsML.org

Using ML predictions on-the-fly for both DIA and DDA will become standard practice

Overview

Why use predicted libraries for DIA Practical considerations Benchmarking results Future development Take home messages

Take home messages

Use predicted libraries whenever possible

Use the correct models for your setup

No *one-fits-all*: Evaluate multiple strategies on your use-case

A ProteomicsML datasets, tutorials, and open science

www.proteomicsml.org

Lennart Martens

Sven Degroeve

Robbin Bouwmeester

Arthur Declercq

IIII UNIVERSITEIT GENT

Bart Van Puyvelde

Maarten Dhaenens

Sander Willems

Ralf Gabriels @RalfGabriels https://ralf.gabriels.dev

https://compomics.com