Algorithms for automatic spectra interpretation

Ralf Gabriels

Summary

- LC-MS/MS recap
- Database search engines: Replicating the LC-MS/MS workflow in silico
- Specialized methods
 - Open-modification searching
 - De novo and sequence tag-based searching
 - Spectral library searching

LC-MS/MS recap

eration ionization and injection

Find precursors (= full peptides)

MS2 scan:

Get fragmentation spectrum for peptide at selected m/z window

acquisition

selection window

fragmentation

Figures created in BioRender.com 3 of 30

LC-MS/MS recap

Figures created in BioRender.com 4 of 30

How do we link MS2 spectra back to the original proteins?

Peptides can be identified by their fragmentation spectra

Peptides can be identified by their fragmentation spectra

De novo peptide spectrum identification is not straightforward

Database search engines replicate the LC-MS steps in silico

General proteomics search workflow

- 1. Define search space
- 2. In silico digestion of proteins to peptides
- 3. For each MS2 spectrum
 - 1. Select candidate peptide-spectrum matches (PSMs)
 - 2. Calculate theoretical peptide spectra
 - 3. Match candidate theoretical spectra to observed spectrum
 - 4. Select best match
- 4. PSM score post-processing

The search space should include ALL proteins that are expected to be present in the sample

Reference proteome

common Repository of Adventitious Proteins

Common contaminants

Search parameters

Database selection

Sticker et al. 2017 (doi:10.1038/nmeth.4338)

A mismatched search space can lead to false identifications

SGVSRKPAPG/2

ATASPPRQK/2

In silico digestion replicates the cleavage rules of the enzyme

>protein_sequence
LPVGTSSGDSPKPDYKGATTVRDLTPENEWYVKEITGSTKTKVI
KLNWQRSTVK

0 missed cleavages

LPVGTSSGDSP<u>KP</u>DYK

GATTVR

DLTPENEWYVK

EITGSTK

TK

VIK

LNWQR

STVK

1 missed cleavage

LPVGTSSGDSPKPDYKGATTVR

GATTVRDLTPENEWYVK

DLTPENEWYVKEITGSTK

EITGSTKTK

TKVIK

VIKLNWQR

LNWQRSTVK

2 missed cleavages

LPVGTSSGDSPKPDYKGATTVRDLTPENEWYVK

GATTVRDLTPENEWYVKEITGSTK

DLTPENEWYVKEITGSTKTK

EITGSTKTKVIK

TKVIKLNWQR

VIKLNWQRSTVK

Search parameters

Allowed missed cleavages

In silico digestion replicates the cleavage rules of the enzyme

>protein LPVGTSSGDSPKPDYKGATTVRDLTPENEWYVKEITGSTKTKVI **KLNWQRSTVK**

0 missed cleavages

LPVGTSSGDSPKPDYK

GATTVR

DLTPENEWYVK

EITGSTK

TK

VIK

LNWOR

STVK

1 missed cleavage

LPVGTSSGDSPKPDYKGATTVR

GATTVRDLTPENEWYVK

DLTPENEWYVKEITGSTK

EITGSTKTK

TKVIK

VIKLNWQR LNWORSTVK

2 missed cleavages

LPVGTSSGDSPKPDYKGATTVRDLTPENEWYVK

GATTVRDLTPENEWYVKEITGSTK

DLTPENEWYVKEITGSTKTK

EITGSTKTKVIK

TKVIKLNWOR

VIKLNWORSTVK

Search parameters

- Allowed missed cleavages
- Minimum peptide length / mass
- Maximum peptide length / mass

Very large peptide search space needs to be filtered to candidate peptide-to-spectrum matches

Computationally expensive High probability of false positives

Filter to a limited set of PSMs

Candidate PSMs are usually selected by their precursor mass

Peptide	Mass	+1 <i>m/z</i>	+2 <i>m/z</i>	+3 <i>m/z</i>
LPVGTSSGDSPKPDYK	1646.81	1647.82	824.41	549.49
GATTVR	603.33	604.34	302.67	202.11
DLTPENEWYVK	1392.65	1393.66	697.33	465.22
EITGSTK	734.38	735.38	368.19	245.80
•••				

Search parameters

Precursor mass window

For each candidate PSM, the theoretical spectrum is matched against the observed spectrum

The SEQUEST scoring function calculates the total intensity that can be explained by the theoretical spectrum

ion trap 0.5 Da ← orbitrap 0.02 Da ↔

Eng. JASMS 1994

The SEQUEST scoring function calculates the total intensity that can be explained by the theoretical spectrum

Eng. JASMS 1994

This score is then calibrated to the distribution of random matches, then the difference between the best and second-best score is calculated

Resulting PSM score for best PSM

Eng. JASMS 1994 20 of 30

The raw output of a search engine is a list of scores for the best-scoring PSM for each spectrum

Spectrum	Best PSM	Score
1	LPVGTSSGDSP <u>KP</u> DY <mark>K</mark>	34.12
2	GATTVR	95.43
3	DLTPENEWYVK	134.87
4	EITGSTK	12.9
•••	•••	245.67

Now what? Which scores are good? Which are bad?

General proteomics search workflow

- 1. Define search space
- 2. In silico digestion of proteins to peptides
- 3. For each spectrum
 - 1. Select candidate peptide-spectrum matches (PSMs)
 - 2. Calculate theoretical peptide spectra
 - 3. Match candidate theoretical spectra to observed spectrum
 - 4. Select best match
- 4. PSM score post-processing: Next lecture

Historically, Mascot and SEQUEST were heavily used; now Andromeda, Comet, MS-GF+, and MS-Amanda are more favored.

Verheggen, Mass Spec Reviews, 2017 23 of 30

Historically, Mascot and SEQUEST were heavily used; now Andromeda, Comet, MS-GF+, and MS-Amanda are more favored.

Verheggen, Mass Spec Reviews, 2017 24 of 30

Summary

- LC-MS/MS recap
- Database search engines: Replicating the LC-MS/MS workflow in silico
- Specialized methods
 - Open-modification searching
 - De novo and sequence tag-based searching
 - Spectral library searching

A few modifications can be added to the search space. To identify more PTMS, open-modification search engines are required.

No variable modifications

MSFragger open-pFind TagGraph ionbot

Common modifications

Combinatorial explosion

All known modifications

...

Sequence tag-based and *de novo* searching

Tag-based

DirecTag TagGraph ionbot Find partial sequences in spectra Usually to limit search space Open modification searching!

• • •

De novo

Novor PepNovo PEAKS No database at all Try to elude full sequence Rare / unknown species

• • •

Spectral library search engines match spectra against previously identified spectra

- + more sensitive scoring
- only identifies what has been seen before

Spectral library search engines match spectra against previously identified spectra

SpectraST

Trans-proteomic pipeline (TPP)

COSS

CompOmics Spectral Library Searching

ANN-SoLo

Feature hashing

GPU-powered ANN searching

Summary

- LC-MS/MS recap
- Database search engines: Replicating the LC-MS/MS workflow in silico
- Specialized methods
 - Open-modification searching
 - De novo and sequence tag-based searching
 - Spectral library searching

Ralf Gabriels
Ralf.Gabriels@UGent.be
@RalfGabriels | @CompOmics
www.compomics.com